SLIDE 865

MEDIUM FORMAT HEAT PRESS

Example of applications

- * Sports goods.

- * Advertising, flags, banners, accessories. * Large photos, posters. * Transfer on Hard Substrate (ceramic, aluminium, plastic, wood...)
 * Textile: home finishing, apparel, curtains...
- * Awning

High thermal efficiency.

- Ideal for sublimation with good productivity and flexibility.
- Fast startup! (15 to 20min)
 85x65cm plate in rectified high quality aluminum to sublimate complete 80x60cm plates
- Perfect heat distribution
- 2-year guarantee on the machine.
- **10-year** guarantee on the heating plate
- Manufactured in France.

Compulsory dedicated support table

Z.I. de Pastabrac 11260 ESPERAZA FRANCE

Tél. +33 (0)4 68 74 05 89 Fax +33 (0)4 68 74 24 08

e-mail: contact@sefa.fr - site: www.sefa.fr

Technical characteristics

Plates Sizes 850 x 650 mm

Weight 261 kg

Pressure 453 gr/cm²

Max Temperature 230°C

Power Supply 240V single phase

Electric Power 6 KW

Amperage 28 A

Compressed air required 2 to 6 bars

Max tickness of materials 50 mm

Air consumption per cycle 8 - 24 liters

(2 bars - 6 bars)

Control Panel

Electronics developed by Sefa.

Accurate and fast regulation (PID control) for a wide range of heat transfer products: Flex, flock, sublimation, screen printing transfer

- Advanced settings :

* 4 recordable programs

* Resettable counter

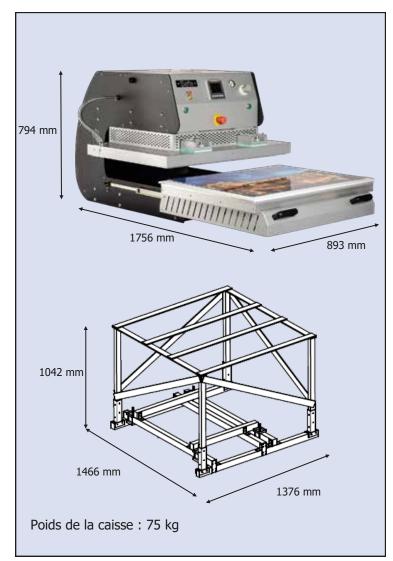
* Double timer * Eco mode

* User friendly touch screen

* Heat sensor PT100

From 0 to 30 min (precision +/- 1%) From 0 to 230°C (précision +/- 1%) Heating time to reach 180°C : 15 min.

Advantages


- Quality:

- * Sliding lower plate for user friendly preparation from single operator.
- * Insulated heating plate for less heat losses.

- Mechanics:

- * Highly robust braced frame for stability under high temperature and pressure.
- * Adjusted and reinforced high quality aluminium upper plate for optimal pressure distribution via two large pneumatic cylinders.

Dimensions

